

CAPITOLATO TECNICO

AFFIDAMENTO DEL SERVIZIO DI CONSULENZA PER IL COORDINAMENTO TECNICO ED IL SUPPORTO INDUSTRIALE IN FASE A PER LO STUDIO DEL DEEP SPACE TRANSPONDER & RECEIVER (DST-R) E DELLA HIGH GAIN ANTENNA (HGA) PER LA MISSIONE NASA-JPL TRIDENT

CIG: 86849095A1

CUI: S80007010376202000063

CPV: 71241000-9 Studi di fattibilità, servizi di consulenza, analisi

Responsabile Unico del Procedimento Dott.ssa Laura Morigi Firmato digitalmente

Referente tecnico Prof. Paolo Tortora Firmato digitalmente

Pubblicazione sul profilo del Committente: 31/03/2021.

INDICE

1.	OGO	GETTO	. 3
		OGO DI ESECUZIONE DEL SERVIZIO	
		RATTERISTICHE DEL SERVIZIO	
	3.1	Background	
3	3.2	Scopo del Lavoro	. 3
3	3.3	Modalità di erogazione del servizio	. 5
3	3.4	Tempistica di esecuzione del servizio	. 5
4.	PEN	IALI	. 6
5.	RUC	DLI	. 6

1. OGGETTO

Il presente Capitolato tecnico ha ad oggetto l'affidamento del servizio di consulenza per il coordinamento tecnico ed industriale in Fase A per lo studio del Deep Space Transponder & Receiver (DST-R) e della High Gain Antenna (HGA) per la missione NASA-JPL TRIDENT.

2. LUOGO DI ESECUZIONE DEL SERVIZIO

Il servizio verrà eseguito presso le sedi di Roma e l'Aquila di Thales Alenia Space Italia.

3. CARATTERISTICHE DEL SERVIZIO

3.1 Background

La missione TRIDENT, dedicata all'esplorazione di Tritone, è stata proposta da NASA/JPL nell'ambito delle "Discovery Mission", ed è stata selezionata dalla NASA, a febbraio 2020, assieme ad altre tre missioni per uno studio di fase A. Al termine di questa fase, circa a metà 2021, la NASA selezionerà tra le quattro missioni pre-selezionate le due Discovery Mission che potranno volare nei due slot di lancio del 2026 e del 2028. Il JPL ha richiesto la collaborazione all'ASI (Agenzia Spaziale Italiana) per la realizzazione di questa missione ed ASI ha confermato il proprio interesse a collaborare affidando all'Università di Bologna la responsabilità scientifica degli esperimenti di Radio Scienza.

La missione TRIDENT esegue una missione scientifica di 10 giorni che ha come obiettivi: (a) la ricerca dell'oceano interno, (b) la misura della ionosfera e della atmosfera neutra, (c) l'osservazione di quasi tutto Tritone, mentre esso orbita attorno a Nettuno. L'esperimento di radio scienza contribuisce in modo fondamentale agli obiettivi (a) e (b) di cui sopra, ed in particolare ha il compito di misurare il campo di gravità di quadrupolo e mappare la ionosfera ed esosfera di Tritone. A questo scopo verranno utilizzati due elementi fondamentali del sistema radio di bordo, il DST-R e la HGA, per la cui progettazione preliminare l'Università di Bologna intende avvalersi di una consulenza tecnica ed industriale da parte di un operatore economico esterno all'Università stessa.

3.2 Scopo del Lavoro

L'attività richiesta consiste nel coordinamento tecnico del supporto in Phase A per lo studio del Deep Space Transponder & Receiver (DST-R) e della High Gain Antenna (HGA) per la missione NASA-JPL TRIDENT.

Il **DST-R** è un transponder/ricevitore in banda X e Ka che ingloba capacità di processamento digitale di segnale (DSP). In relazione a tale strumento, l'appaltatore dovrà eseguire le seguenti attività tecniche:

- Consolidamento dei requisiti scientifici;
- Definizione dell'architettura di base che consenta di raggiungere detti requisiti, ed in particolare che rispetti i seguenti requisiti funzionali:
 - o processamento digitale di segnale (DSP) a bordo, per la funzione di ricezione dei segnali Open Loop (OL) in banda X- e Ka;
 - o effettuare contemporaneamente misure di gravità ed atmosferiche di alta qualità con uno strumento al contempo di piccola massa e basso consumo di potenza;
 - o effettuare esperimenti di gravità mediante un link 2-way in banda X e quindi possedere funzioni "classiche" di un transponder (ricevitore/trasmettitore), nel quale il ricevitore aggancia il segnale in uplink da Terra, e genera un segnale coerente in fase trasmesso in downlink verso Terra.
 - o ricevere simultaneamente in uplink i segnali in banda X e Ka, per le radio occultazioni atmosferiche
 - o campionare a diverse frequenze di campionamento (nel range 62.5Hz 32kHz, selezionabile via telecomando da Terra) per entrambe le componenti in fase ed in quadratura (I e Q), con risoluzione a 12 bit, ed in doppia banda di frequenza (X e Ka, solo Left Circular Polarization LCP;
 - o essere connesso a due Ultra Stable Oscillators (USO) esterni ridondati.
- Supporto al team scientifico nell'analisi dei documenti architetturali del sistema radio della sonda TRIDENT (con particolare riferimento alle funzioni del transponder), che saranno redatti da NASA/JPL;
- Supporto al team scientifico nella redazione di link budgets /error budgets per gli esperimenti di gravità e di occultazioni atmosferiche;
- Redazione di documenti di interfaccia con la sonda TRIDENT che verranno chiesti da NASA/JPL;
- Redazione di rapporti tecnici sulle attività di progettazione preliminare svolta, in forma di documenti/presentazioni/fogli di calcolo.

Per quanto riguarda le attività di sviluppo della **HGA**, si dovrà partire come base ingegneristica dalle antenne HGA sviluppate nell'ambito delle missioni ESA EXOMARS (diametro 2.2m) e JUICE (diametro 2.54m). Le attività principali richieste all'appaltatore sono le seguenti:

- a partire dalle performance di Guadagno RF, delle HGA delle missioni JUICE/EXOMARS dell'ESA, nelle bande X e Ka e delle loro tecnologie:
 - o ottimizzare l'ottica dell'antenna progettata per la missione JUICE ottimizzandone il suo diametro, in funzione del guadagno richiesto dalla missione TRIDENT sia in banda X che in banda Ka;
 - prevedere il foro necessario al sistema di telecamere di bordo e quantificarne la perdita di guadagno rispetto al caso nominale (senza foro);

- in base ai massimi volumi allocabili dalla sonda TRIDENT, verificare la compatibilità con lo spacecraft a partire dall' antenna HGA della missione JUICE. In particolare, nella verifica della compatibilità, si porrà particolare attenzione:
 - o Alla massa totale;
 - o All'ingombro totale (diametro esterno)
- A partire dai requisiti ambientali di radiazioni e di range di temperatura della missione TRIDENT, effettuare una analisi di compatibilità verso l'ambiente delle tecnologie che caratterizzano le HGA già realizzate per EXOMARS e JUICE.
- Supporto al team scientifico nell'analisi dei documenti architetturali del sistema radio della sonda TRIDENT (con particolare riferimento alle funzioni dell'antenna di alto guadagno), che saranno redatti da NASA/JPL;
- Redazione di documenti di interfaccia con la sonda TRIDENT che verranno chiesti da NASA/JPL:
- Redazione di rapporti tecnici sulle attività di progettazione preliminare svolta, in forma di documenti/presentazioni/fogli di calcolo.

3.3 Modalità di erogazione del servizio

Il servizio verrà erogato tramite produzione di note tecniche, presentazioni, schemi a blocchi, dati tecnici, e mediante la partecipazione a meeting scientifici (da tenersi per via telematica) che potranno assumere cadenza settimanale, bisettimanale o mensile, a richiesta dell'Università.

3.4 Tempistica di esecuzione del servizio

Il servizio di consulenza richiesto verrà completato entro un periodo massimo di 3 mesi dall'avvio dell'esecuzione del contratto.

La pianificazione temporale di esecuzione del servizio è la seguente:

- 1) Entro 1 mese dall'avvio dell'esecuzione del contratto: consolidamento dei requisiti scientifici del DST-R e della HGA;
- 2) Entro 2 mesi dall'avvio dell'esecuzione del contratto : progetto architetturale del DST-R che rispetti tutti i requisiti funzionali e dimensionamento della HGA secondo i requisiti di link budget ed error budget;
- 3) Entro 3 mesi dall'avvio dell'esecuzione del contratto : redazione di tutta la documentazione tecnica di output richiesta da NASA/JPL per il completamento dello studio di Fase A della missione.

4. PENALI

L'Alma Mater Studiorum - Università di Bologna si riserva la facoltà di applicare penali per il mancato rispetto delle prestazioni e delle tempistiche indicate nei paragrafi 3.1, 3.2, 3.3 e 3.4 del presente Capitolato.

5. RUOLI

Il Responsabile Unico del Procedimento è la Dott.ssa Laura Morigi, Responsabile del Centro Interdipartimentale di Ricerca Industriale – CIRI Aerospaziale- Aerospace – CIRI AERO dell'Alma Mater Studiorum - Università di Bologna.

Il Referente tecnico è il Prof. Paolo Tortora, afferente al Dipartimento di Ingegneria Industriale e al Centro Interdipartimentale di Ricerca Industriale - CIRI Aerospaziale- Aerospace - CIRI AERO dell'Alma Mater Studiorum - Università di Bologna.